Section 2.1 Functions and Continuity

A *function* is a relations in which each element in the domain is paired with exactly one element in the range.

### **Mapping Functions**



#### Example 1 Domain and Range



State the domain and range of each relation. Then determine whether each relation is a function. If it is a function, determine if it is one-to-one, onto, both, or neither.

a. 
$$\{(-6, -1), (-5, -9), (-3, -7), (-1, 7), (6, -9)\}$$
  
D:  $\{\{-6, -5, -3, -1, 6\}\}$   
P:  $\{\{-1, -9, -7, 7, \}\}$ 

Function NOT 1 to 1



Domain:  $\{-2, -1, 2\}$ Range:  $\{-2, -1, 0, 1, 2\}$ 

> NOT a function HOT I TO 1

State the domain and range of each relation. Then determine whether each relation is a function. If it is a function, determine if it is one-to-one, onto, both, or neither.

1A.





fraction

D. \x -3, -2, -1, 0, 1, 3, 4} 8: \$211, -2,1,-9.,43

# The Vertical Line Test



### Example 2 Graph a Relation

Graph  $y = \frac{1}{2}x - 3$ , and determine the domain and range. Then determine whether the equation is a *function*, is *one-to-one*, *onto*, *both*, or *neither*. State whether it is *discrete* or *continuous*.



Graph y = 3x - 1 and determine the domain and range. Then determine whether the equation is a function, is one-to-one, onto, both, or neither. State





When an equation represents a function, the variable, often x, with values making up the domain is called the **independent variable**. The other variable, often y, is called the **dependent variable** because its values depend on x.

Equations that represent functions are often written in **function notation**. The equation y = 5x - 1 can be written as  $\underline{f(x)} = 5x - 1$ .

# Reading Math

Structure The symbol f(x) replaces the y and is read "f of x." The f is just the name of the function. It is not a variable that is multiplied by x.

$$y_1(x) = 5x - 1$$
  
 $y_2(x) = 5x - 1$   
 $y_3(x) = 5x - 1$   
 $y_3(x) = 5x - 1$ 

#### Example 3 **Evaluate a Function**

Given  $f(x) = 2x^2 - 8$ , find each value.

a. 
$$f(6) = 2(4)^2 - 8$$
  
=  $2(36) - 8$   
=  $72 - 8$   
=  $64(6,64)$ 

b. 
$$f(2y) = 2(2y)^2 - 8$$
  
=  $2(4y^2) - 8$   
=  $8y^2 - 8$   
 $(2y, 8y^2 - 8)$ 

Given  $f(x) = x^3 - 3$ , find each value.

A. 
$$f(-2) = (-2)^3 - 3$$
  
 $= -8 - 3$   
 $= -11$   
 $(-2, -11)$ 

B. 
$$f(2t) = (2t)^3 - 3$$
  
=  $8t^3 - 3$   
 $(2t, 8t^3 - 3)$ 

Given  $g(x) = 0.5x^2 - 5x + 3.5$ , find each value.

Given 
$$g(x) = 0.5x^2 - 5x + 3.5$$
, find each value.  
3A.  $g(2.8) = .5(2.8)^2 - 5(2.8) + 3.5$  3B.  $g(4a) = .5(4a) - 5(4a) + 3.5$   
 $= -6.58$   $= 8a^2 - 20a + 3.5$   
 $= 2.8, -6.58$ 

STRUCTURE State the domain and range of each relation. Then determine whether each relation is a *function*. If it is a function, determine if it is *one-to-one*, *onto, both, or neither*.

1.



2.

| 1       | У        |
|---------|----------|
| (-2, 3) | (1, 5)   |
|         | (1, 2) x |
| 0       | (4, -1)  |

3

| Х  | у  |
|----|----|
| -2 | -4 |
| 1  | -4 |
| 4  | -2 |
| 8  | 6  |

Evaluate each function.

**10.** 
$$f(-3)$$
 if  $f(x) = -4x - 8$ 

**11.** 
$$g(5)$$
 if  $g(x) = -2x^2 - 4x + 1$ 

Find each value if f(x) = 3x + 2,  $g(x) = -2x^2$ , and  $h(x) = -4x^2 - 2x + 5$ .

**28.** *f*(−5)

**29**. *f*(9)

**30**. *g*(−3)

**31.** g(-6)

**32.** *h*(3)

**33.** *h*(8)





f(10) =

| ı | 9]         | Х  | У |
|---|------------|----|---|
|   | Damain     | -3 | 3 |
|   | Domain:    | -1 | 1 |
|   | 7-3,7,0,15 | 0  | 0 |
|   | Range:     | 1  | 1 |
|   | しょうていいち    |    |   |

f(-1) =







Domain:

Range:

$$f(3) =$$





$$f(4) =$$







$$f(2) = -4$$



Domain:

Range:

f(-2) =

Domain and Range Notes

| NAME: |  |
|-------|--|
|       |  |

State the domain and range for each graph and then tell if the graph is a function (write yes or no). If the graph is a function, state whether it is discrete, continuous or neither.

1) Domain\_\_\_\_\_\_ Range\_\_\_\_\_\_ Function?\_\_\_\_\_



2) Domain\_\_\_\_\_\_ Range\_\_\_\_\_\_ Function?\_\_\_\_\_



3) Domain\_\_\_\_\_ Range\_\_\_\_\_ Function?



4) Domain\_\_\_\_\_\_ Range\_\_\_\_\_\_ Function?\_\_\_\_\_\_



5) Domain\_\_\_\_\_ Range\_\_\_\_\_ Function?\_\_\_\_\_



6) Domain\_\_\_\_\_\_ Range\_\_\_\_\_\_ Function?\_\_\_\_\_\_



7) Domain\_\_\_\_\_\_ Range\_\_\_\_\_\_ Function?\_\_\_\_\_



8) Domain\_\_\_\_\_\_ Range\_\_\_\_\_\_ Function?\_\_\_\_\_



9) Domain\_\_\_\_\_\_ Range\_\_\_\_\_\_ Function?\_\_\_\_\_

